
Implementation of Hilbert

transformation in FPGA

Team Name: Casper

Khagesh Patel

Chaitanya Ahuja

Basics (Bit Representation)
32-bit representation with 16-bit floating

Avoided floating in hardware,
All the calculations are performed on numbers already multiplied by 216

Algorithm for Hilbert Transform

FFT 32 Motivation

Overall block diagram

FFT 32 Implementation
Is implemented using FFT 16 and FFT 2 blocks.

Pipelined approach instead of fully parallel architecture.
 Less hardware requirement.

 More clock cycles (Optimized)

 One pass through FFT32 requires 96 clock cycles.

 Twiddle multiplier constants can be stored in external memory thereby
reducing hardware requirement further.

16 point FFT implementation
Implemented using Rader’s Algorithm given in

Refer to PDF for RADER’s Algorithm

Requires approximately 30 clock cycles to return first output.

Even and odd outputs are running in parallel for most of the operation as calculations due to
even and odd data points are independent.

Even and Odd evaluations in themselves are pipelined to achieve the optimal memory time
balance.

Only Four Specialized multiplication units are used.

Pipelined
diagram

for FFT 16.

Advantages

 Lesser number of multiplication leads to decrease in truncation error and hardware
consumption.

Lesser number of twiddle factors means lesser memory requirement, lesser hardware
requirement and lesser chances of error propagation.

Method Multiplica
tions

Additions Twiddle factors in
LUT

Simple 16pt FFT using Basic 2pt Butterfly 24 64 14

Rader’s Algorithm 18 74 5

Multiplication Factors
cos

𝜋

4
=0.7071=0.1011010100000100

cos
3𝜋

8
= 0.3827=0.0110000111111000

cos
𝜋

8
= 0.9239=0.1110110010000100

cos
𝜋

8
+ cos

3𝜋

8
=1.3066=1.010011100111110

cos
𝜋

8
− cos

3𝜋

8
=0.5412=0.1000101010001100

Multiplication
Multiplication of REAL and IMAGINARY pipelined to save memory.

Small Blocks of calculations (for eg. Multiplication with 5 or 3) is performed.

These small blocks are combined to get complete multiplication

For eg. Lets take Multiplication with (0.5412)10∗ 2
16 = 1000 1010 1000 1100 2

Clearly, (101)
2

=(5) and (11)
2

=(3), hence we can use these small blocks for full calculations.

Final output of this multiplication is a 32-bit number.

Multiplication Module (Block Diagram)

FFT 32

Hilbert Transform

Usage of FFT of
1

𝜋𝑛
which is 𝑓 𝑛 =

0, 𝑛 = 0 𝑜𝑟 𝑛 = 𝑁/2

−𝑖,
𝑁

2
− 1 ≥ 𝑛 ≥ 1

𝑖,
𝑁

2
+ 1 ≥ 𝑛 ≥ 𝑁 − 1

IFFT
Computation based on

Same FFT Block used for computation of FFT.

Simple Rearrangement operations and “divide by 32” operation yields IFFT.

Summary of Innovations
Use of Optimized Algorithm for FFT 16 – with reduced number of multiplications and twiddle
factor storage

Used precision multiplication blocks (Number=4) for calculations of intermediate steps of FFT
16 algorithm.

 Same hardware used for calculation of first stage of IFFT.

Result for test cases
Input wave form Maximum absolute error Least square error

50 sin(100t) 4.0842*10−4 1.3158*10−6

10 sin (100t)+ 80 cos (100t) 0.0011 9.4172*10−6

Plots for 50 sin(100t)

Plots for 10 sin (100t)+ 80 cos (100t)

Hardware consumption

 Total number of clock cycles: 276 .

References
 H. J. Nussbaumer

 Alan V. Oppenheim, Ronald W. Schafer“

