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1 Topological Data Analysis

Topological Data Analysis (TDA) refers to data analysis methods which study properties such as shape,
topology and connectedness of the data. In this project we plan to study some of the key techniques
used in TDA along with their established theoretical properties from a statistical perspective. TDA
provides the data analyst with a set of tools to visualize and analyze a data sample. Below we give
an overview of three such techniques summarized from [15], and then we take a deep dive into the
density clustering and present some results from [6] which discusses how to construct confidence
sets for density tree estimates. Assume that we observe a data sample X1, X2, . . . XN ∼ P , where
Xi ∈ Rd.

Density clustering refers to methods which use an estimate of the true density (such as the Kernel
Density Estimator (KDE) p̂h(x)) to find clusters where the data concentrates. This can be done by
first constructing the estimated upper level sets L̂t = {x : p(x) > t}, and then finding its connected
components (which are the clusters). Varying t gives a whole set of clusters at every level, which can
be conveniently visualized as a tree known as the density tree. Statistical inference on these trees is
studied in [6], and we give a detailed overview in the following section.

Manifold learning starts with the assumption that the density P is supported (mostly) on a subset S of
dimension r, where r < d. The goal then, is to either find an estimate of this subset Ŝ, or embed the
observed data in an r-dimensional subspace while preserving its topological properties. In this project
we focus on the first problem, an estimator for which can be constructed as Ŝ = ∪Ni=1B(Xi, ε), i.e.,
the union of ε-radius balls around each observed sample. Detailed analysis of this estimator is given
in [10] for the no noise case, and in [11] in the presence of noise. While manifold learning assumes
that the density is supported on S, an alternative is to find density ridges of small dimension where
most of the density concentrates. These can be estimated from p̂h(x) using the SCMS algorithm
described in [12]. Statistical properties of the estimates of density ridges are studied in [4].

Persistent homology studies the topological properties of the data sample at varying scales. Specifi-
cally, let Lε = {x : dS(x) < ε} denote the lower level set of the distance function for a set S given
by dS(x) = infy∈S ‖x− y‖. Persistent homology studies the connected components and holes of Lε
as ε is varied. The birth and death times (in terms of ε) for each hole and connected component can
be plotted to give what is known as the persistence diagram D. An estimator L̂ε for the lower level is
given by the same union of balls ∪Ni=1B(Xi, ε) used for estimating S in manifold learning, and this
can be used in turn to derive an estimate D̂ for the persistence diagram. However, this diagram can
be unstable in the presence of outliers, and instead upper level sets of the KDE may be used to record
the birth and death times of the components. Another alternative is to replace the distance function
with another metric – distance to a measure (DTM). These approaches are studied in detail in [3].

Our motivation in studying TDA for the course project stems from the desire to connect these methods
to recent work on representing words and sentences in vector spaces in Natural Language Processing
(NLP). Visualizing language based data involves converting a discrete space to a continuous one. Skip-
gram based Word Embeddings[8, 9] have been shown to perform well empirically, but the theoretical
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grounding is not well understood as of now. As part of the project we aim to use density clustering to
visualize these embeddings to verify the distance metric in a practical setting. Methods like t-SNE[7]
and Elastic Embeddings[1] demonstrate interesting insights for dimensionality reduction, however
our goal is to obtain multi-resolution cluster visualization of the data in the embedding space of the
vectors themselves.

Dimensionality reduction to visualization could potentially remove important information, hence
topological methods like density based cluster trees could a viable alternative. It is possible to
objectively decide if it makes sense to visualize a given density estimate [6] along with finding
confidence sets for the density function. Confidence sets are key for pruning the cluster tree, hence
giving clearer visualizations.

1.1 Statistical Inference for Density Trees

In this section we discuss statistical inference over density trees, also known as cluster trees since they
provide a visualization of a range of clusterings of the estimated density1. In particular we follow
Kim et al [6] and describe the construction of confidence sets for the trees, followed by some pruning
strategies to remove statistically insignificant features of the trees. We start with a formal definition
of a tree and then define a distance function over the members of a tree which endows them with a
metric topology. To formally define edges within the tree (leaves or internal branches of the tree), we
define the notion of an equivalence class of the tree. Then each equivalence class corresponds to an
edge on the tree. We also define the l∞ metric which measures the distance between two trees.

Next we outline an important lemma which shows that the cluster tree constructed from the biased
Kernel Density Estimate (KDE) with a small but fixed bandwidth, and the cluster tree of the true
distribution have the same metric topology above. Hence, it is not necessary to let the bandwidth tend
to 0, which leads to a much better rate for cluster tree estimation compared to density estimation. This
makes intuitive sense, since for the cluster tree we are only interested in its topological properties
which are in some sense easier to estimate than the full distribution. Then we outline the bootstrap
method for constructing the confidence set for the true cluster tree using the l∞ metric.

The confidence set obtained using the bootstrap consists of infinitely complex trees, since small
perturbations of the estimated tree result in extra leaves and branches without leaving the confidence
set. One of the main contributions of [6] is to come up with pruning rules which can remove
statistically insignificant features of the estimated tree. In the last section, we summarize a partial
ordering for a collection of trees which captures the notion of simplicity of the trees, and present the
formal definition of the pruning rules in terms of the definitions of the tree edge. Lastly, we outline a
result which shows that the tree obtained after pruning is indeed simpler than the original tree, comes
from a valid density function, and that it lies in the bootstrap confidence interval.

2 Definitions and Setup

Assume that we have an iid sample from the true densityX1, X2, . . . , XN ∼ p, whereXi ∈ X ⊂ Rd.
The cluster tree is defined in terms of a function f : X → [0,∞), which is usually a density function.

Definition 1. Given f : X → [0,∞), the cluster tree of f is a function Tf : R → 2X , where 2X

denotes all subsets of X , such that Tf (λ) = connected({x ∈ X : f(x) ≥ λ}), where connected(S)
denotes the connected components of set S. The collection of all the connected components at all
levels λ is denoted by {Tf} = ∪λTf (λ).

We will sometimes use C ∈ Tf to denote that C ∈ {Tf}. Figure 1 shows an example. Note that the
cluster tree is, in fact, a tree, i.e for A,B ∈ {Tf} either A ⊂ B or B ⊂ A or A∩B = φ. The cluster
tree for the true density will be denoted by Tp, and the cluster tree of the KDE will be denoted by
Tp̂h , where,

p̂h(x) =
1

nhd

N∑
i=1

K(
‖x−Xi‖

h
) (1)

1We will use these terms interchangeably in the rest of the paper.
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Next we define a topology on the collection of sets {Tf} which will be used later
to justify the use of a fixed bandwidth for the KDE when constructing the confi-
dence set. Kim et al [6] define the following distance function between sets in {Tf}:

Figure 1: Top: A density) along
with its level set clusters Tf (λ) at
level λ. Bottom: A pictorial rep-
resentation of the entire cluster tree
{Tf} at for all levels λ > 0. Figure
borrowed from [2].

Definition 2. For any two sets C1, C2 ∈ {Tf}, the tree dis-
tance function dTf : {Tf} × {Tf} → [0,∞) is defined as:

dTf (C1, C2) = λ1 + λ2 − 2mf (C1, C2), (2)

where λ1 = sup{λ : C1 ∈ Tf (λ)} and similarly λ2
for C2, and mf (C1, C2) = sup{λ ∈ R : ∃C ∈
Tf (λ) s.t. C1, C2 ⊂ C} is called the merge height of the
two sets.

We can also define the merge height mf (x, y) between two
points x, y ∈ X analogously as mf (x, y) = sup{λ ∈ R :
∃C ∈ Tf (λ) s.t. x, y ∈ C}.
Lemma 1. Let Tf be a cluster tree and let dTf be the tree
distance function defined above. Then dTf is a metric on
{Tf}.

Proof. Non-negativity (dTf (C1, C2) ≥ 0) and symmetry
(dTf (C1, C2) = dTf (C2, C1)) follow trivially from the def-
inition above.

For identity of indiscernibles (C1 = C2 ⇔ dTf (C1, C2) = 0),
note that if C1 = C2 then λ1 = λ2 = mf (C1, C2), and
hence dTf (C1, C2) = 0. If dTf (C1, C2) = 0 then, since
λ1, λ2 ≥ mf (C1, C2), it must be that λ1 = λ2 = mf (C1, C2). Hence, ∃C ∈ Tf (λ1) s.t. C1 ⊂ C
and C2 ⊂ C (from definition ofmf ). But since C1, C2, C ∈ Tf (λ1), hence C1∩C 6= φ and C1 = C.
Similarly, C2 = C which leads to the conclusion that dTf (C1, C2)⇒ C1 = C2.

To prove sub-additivity (dTf (C1, C2) + dTf (C2, C3) ≤ dTf (C1, C3)), note that
max{mf (C1, C2),mf (C2, C3)} ≤ λ2 since both mf (C1, C2) and mf (C2, C3) are ≤ λ2.
Also note that min{mf (C1, C2),mf (C2, C3)} ≤ mf (C1, C3) since there exist sets
C12, C23 ∈ Tf (min{mf (C1, C2),mf (C2, C3)}) s.t. C1, C3 ∈ C12 = C23. Hence, it fol-
lows that,

dTf (C1, C2) + dTf (C2, C3)

= λ1 + λ2 − 2mf (C1, C2) + λ2 + λ3 − 2mf (C2, C3)

= λ1 + λ3 − 2(min{mf (C1, C2),mf (C2, C3)}+ max{mf (C1, C2),mf (C2, C3)} − λ2)

≥ λ1 + λ3 − 2mf (C1, C2)

= dTf (C1, C3)

Hence, we have shown that dTf is non-negative, symmetric, sub-additive and follows the identity of
indiscernibles. Hence it is a metric on {Tf}.

The collection of sets {Tf} along with the metric dTf form a metric topology, whose ε-balls are
defined by B(C, ε) = {C ′ ∈ {Tf} : dTf (C,C ′) < ε}. We say that two trees are homeomorphic or
Tf ∼= Tg if the sets of collected components {Tf} and {Tg} are homeomorphic, i.e. there exists a
bijective continuous function between the two which has a continuous inverse.

Next we define edges in the cluster tree, i.e. the red vertical segments in Figure 1 (bottom). First note
that, intuitively, an edge can be defined as the set of clusters in {Tf} which have the same inclusion
relationship with respect to all other clusters in the tree. To formalize this, for A,B ∈ {Tf} define
an interval as [A,B] = {C ∈ {Tf} : A ⊂ C ⊂ B}. Also, define an equivalence relationship ∼ and
write A ∼ B if and only if for all C ∈ {Tf} s.t. C 6∈ [A,B] ∪ [B,A], C ⊂ A iff C ⊂ B and A ⊂ C
iff B ⊂ C. This relation is reflexive, symmetric and transitive. Edges in {Tf} are then given by the
equivalence classes in {Tf} formed by this relation. We denote them by E(Tf ) = {Tf}/∼.
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3 Confidence Sets

3.1 Tree Metrics

To quantify the closeness of trees, tree metrics need to be defined which are suitable for statistical
inference. Let p, q : X → [0,∞) be non-negative functions which represent probability density
functions. Tp and Tq correspondingly represent density trees.

A common metric is to find the maximum distance between the function values over all points in the
domain space. It is called l∞ metric and is defined as

d∞ (Tp, Tq) = sup
x∈χ
|p(x)− q(x)| = ‖p− q‖∞. (3)

Another metric is the Merge Distortion Metric [5], which is defined in a way that the distance between
the clusters maps to the distance between the merge heights of the given two cluster trees.

dM (Tp, Tq) = sup
x,y∈χ

|mp(x, y)−mq(x, y)|, (4)

where mp(x, y) is the merge height of x.y for the distribution p(x).

Even though, Merge Distortion Metric can handle the perturbations in l∞, d∞ and dM turn out to be
equivalent if the distributions are continuous (see Lemma 2 below). Hence, we can use either of them
to construct confidence sets.

There is another metric known as Modified Merge Distortion Metric (dMM ) which is not used in this
paper, because it is not point-wise Hadamard differentiable and hence does not guarantee stability to
perturbations in the input distribution.

Lemma 2. When p and q are continuous, then d∞(Tp, Tq) = dM (Tp, Tq).

The outline of the proof is as follows.

Proof. To show that d∞(Tp, Tq) = dM (Tp, Tq), it is shown that d∞(Tp, Tq) ≥ dM (Tp, Tq) and
d∞(Tp, Tq) ≤ dM (Tp, Tq).

The proof of d∞(Tp, Tq) ≥ dM (Tp, Tq) involves finding the lowerbound of l∞ metric. To make the
process more straightforward, choose a set C0 ∈ Tp(mp(x, y)− ε) where ε > 0. C0 represents all
the connected sets just below some merge point. For all z ∈ C0 and some x, y ∈ C0, we have

q(z) > p(z)− d∞(Tp, Tq),

≥ mp(x, y)− ε− d∞(Tp, Tq),

hence, C0 ⊂ q−1(mp(x, y)− ε− d∞(Tp, Tq),∞) and C0 is connected, which shows that x, y are in
the same connected component of q−1(mp(x, y)− ε− d∞(Tp, Tq),∞)

mq(x, y) ≤ mp(x, y)− ε− d∞(Tp, Tq),

with similar arguments we get

mp(x, y) ≤ mq(x, y)− ε− d∞(Tp, Tq),

which implies

|mp(x, y)−mq(x, y)| ≤ d∞(Tp, Tq),

supx,y∈χ|mp(x, y)−mq(x, y)| ≤ d∞(Tp, Tq),

dM (Tp, Tq) ≤ d∞(Tp, Tq).

For the second part of the proof, choose x such that |p(x)− q(x)| > d∞(Tp, Tq)− ε
2 . Also, there

exists a finite ball of size δ > 0 such that B(x, δ) ⊂ p−1
(
p(x)− ε

2 ,∞
)
∩ q−1

(
q(x)− ε

2 ,∞
)
. As
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B(x,∞) is connected, we have p(x) − ε
2 ≤ mp(x, y) ≤ p(x) and q(x) − ε

2 ≤ mq(x, y) ≤ q(x).
This implies that

|mp(x, y)−mq(x, y)| ≥ |p(x)− q(x)| − ε

2
,

> d∞(Tp, Tq)− ε,
supx,y∈χ|mp(x, y)−mq(x, y)| ≥ d∞(Tp, Tq),

dM (Tp, Tq) ≥ d∞(Tp, Tq),

as this is true for any ε > 0. Hence, dM (Tp, Tq) = d∞(Tp, Tq).

3.2 Confidence Sets via Bootstrap

A valid confidence interval is defined as Cα = {T : d∞(T, Tp̂h) ≤ tα} for Tph . Consider a
bootstrap sample {X̃1

1 , . . . , X̃
1
n}, . . . , {X̃B

1 , . . . , X̃
B
n }. This sample is used to estimate cluster trees

{T̃ 1
ph
, . . . , T̃Bph} using kernel density estimation. These estimates are used to construct a cumulative

distribution function F̂ , which is finally used to estimate tα.

F̂ (s) =
1

B

B∑
i=1

I(d∞(T̃ iph , Tp̂h) < s),

t̂α = F̂−1(1− α),

where I is the indicator function.
Theorem 1. Under regularity conditions on the kernel, an asymptotically valid confidence interval
is

P
(
Tph ∈ Ĉα

)
= 1− α+O

(
log7 n

nhd

) 1
6

, (5)

where Ĉα = {T : d∞(T, Tp̂h) ≤ t̂α}

In Theorem 1 we can see that the choice of h can change the rate. Also the confidence interval
has been constructed for the cluster estimate (Tph) instead of the true distribution (Tp0). Instead of
make h(bandwidth) go to zero, we set h to a small positive value and use Lemma 3 to show that
Tp0 and Tph have the same topology. In addition to this, the rate becomes dimension independent to

O
(

log7 n
n

) 1
6

.

Lemma 3. If the true unknown density p0, has non-degenerate critical points, then ∃ a constant
h0 > 0, such that ∀0 < h ≤ h0, the 2 cluster trees, Tp0 and Tph have the same topology.

Proof. Assume that p is a Morse Function supported on a compact set S with finitely many and
distinct critical values. By properties of the Morse function, ∃ a constant C0 such that for a smooth
function q : S → R and ‖q − p‖∞, ‖∇q −∇p‖∞, ‖∇2q −∇2p‖∞ < C0. This implies that q is a
Morse function.

As described in [3], there exist 2 different diffeomorphisms φ : S → S and h : R → R such that
q = h ◦ p ◦ φ, which implies Case 1: q ◦ φ−1 = h ◦ p and Case 2: h−1 ◦ q = p ◦ φ
Case 1: For any connected component C ∈ Tp(λ), φ−1(C) is a connected component of Tq(h(λ)).
Hence we can define a mapping Φ : {Tp} → {Tq} where Φ = φ−1 for all C in the support of Φ. As
φ is diffeomorphic, Φ is also diffeomorphic, hence C1 ⊂ C2 iff Φ(C1) ⊂ φ(C2). Using Definition 3,
we can say that Tp � Tq
Case 2: The proof is similar to Case 1. For any connected component C ∈ Tq(λ), φ(C) is a
connected component of Tp(h−1(λ)). Hence we can define a mapping Φ : {Tq} → {Tp} where
Φ = φ for all C in the support of Φ. As φ is diffeomorphic, Φ is also diffeomorphic, hence C1 ⊂ C2

iff Φ(C1) ⊂ φ(C2). Using Definition 3, we can say that Tq � Tp.

Combining Case 1 and Case 2 and using Lemma 4, we can say that Tp and Tq have the same topology
(as defined as Section 2). Also non-parametric theory [14] gives us that ∃ a constant C1 > 0 such

5



that ‖ph − p‖2,max < C1h
2 when h < 1. Using the definition of morse function it can be said that

if 0 ≤ h ≤
√

C0

C1
, Th and T have the same Topology. Replacing T with Tp and Th with Tph , the

given lemma is proved.

4 Tree Pruning

The confidence set constructed above is asymptotically valid, however it contains infinitely complex
trees. We define the notion of tree “complexity” formally below, but intuitively we can see that given
a tree T ∈ Ĉα, infinitesimal perturbations of this tree which lead to extra edges will also belong
in Ĉα. Hence, in this section we review the pruning rules presented in [6] to remove statistically
insignificant features from the estimated tree such that the resulting tree is a simple representative
from the confidence set.

4.1 Notions of Tree Simplicity

We first need to define a notion of tree simplicity, for which we define the following partial ordering:
Definition 3. For any f, g : X → [0,∞) and their trees Tf , Tg we say Tf � Tg if ∃ a map
Φ : {Tf} → {Tg} which preserves set inclusion relationships, i.e. for any C1, C2 ∈ {Tf} we have
C1 ⊂ C2 iff Φ(C1) ⊂ Φ(C2).

A partial order must satisfy the following properties – (i) reflexivity, (ii) transitivity, (iii) antisymmetry.
The first two are trivial to check in the above case, for the third one we outline the following lemma:
Lemma 4. Let f, g : X → [0,∞) be continuous functions, and let Tf , Tg be their finite cluster trees,
i.e. their edge sets E(Tf ) and E(Tg) are finite. Then Tf � Tg and Tg � Tf is true if and only if
there exists a homeomorphism Φ : {Tf} → {Tg} which preserves the root, i.e. Φ(X ) = X .

Note that a homeomorphism between the two trees implies that they are topologically equivalent. We
give an outline of the proof below, for details see [6].

Proof Sketch. For the only if direction, from the definition of the partial order and since Tf � Tg,
we have a map Φ which maps sets in {Tf} to sets in {Tg}. This can be easily extended to another
map Φ̄ : E(Tf ) → E(Tg) over the edge sets of the two trees which can be shown to be injective.
Hence, |E(Tf )| ≤ |E(Tg)|. Similarly, starting from Tg � Tf we get that |E(Tg)| ≤ |E(Tf )|. Hence,
|E(Tf )| = |E(Tg)| and since both of these are finite, the map Φ̄ is a bijection. It can be shown that
this map Φ̄ sends adjacent edges in E(Tf ) to adjacent edges in E(Tg) and the root to root. From this,
and the fact that f, g are continuous we can extend Φ̄ to a homeomorphism.

For the if direction, we note that for any C ∈ {Tf}, the interval [C,X ] is mapped to another interval
Φ([C,X ]) which is uniquely determined by its boundary points, i.e. Φ([C,X ]) = [Φ(C),Φ(X )].
From this we can show that if C1, C2 ∈ {Tf} and C1 ⊂ C2, then Φ(C1) ⊂ Φ(C2). Hence, Tf � Tg .
Since Φ−1 : Φ({Tf}) → {Tg} is also a homeomorphism from exactly the same argument we can
get that Tg � Tf .

We can verify that the above partial order matches our intuitive notions of tree complexity. We state
the following properties of this order without proofs, which can be found in [6]:

1. If Tf � Tg, then |E(Tf )| ≤ |E(Tg)|. Hence a tree obtained by removing edges from
another tree is necessarily simpler. This justifies the pruning rules presented below.

2. If Tg can be obtained by adding edges to Tf , then Tf � Tg holds.
3. The existence of a topology preserving embedding from {Tf} to {Tg} implies that Tf � Tg .

4.2 Pruning Rules

Pruning rules are methods for removing statistically insignificant edges of the estimated tree Tp̂h such
that the resulting tree T̃ satisfies T̃ � Tp̂h and T̃ ∈ Cα. Two such schemes are presented in [6] which
can be informally described as follows (recall that t̂α is the d∞ threshold selected via bootstrap):
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1. Pruning only leaves: Remove all leaves of the tree with length less than 2t̂α.
2. Pruning leaves and internal branches: Remove all leaves and internal branches of the

tree with cumulative length less than 2t̂α.

The following definition gives a formal description of these rules in terms of a function life which
maps edges of the tree to a value representing its significance. First we define a partial order on the
edge set E(Tf ) as follows: for [C1], [C2] ∈ E(Tf ) we say that [C1] ≤ [C2] if and only if for all
A ∈ [C1] and B ∈ [C2] we have A ⊂ B.
Definition 4. Suppose the function life : E(Tf )→ [0,+∞] satisfies that [C1] ≤ [C2] implies that
life([C1]) ≤ life([C2]). Then the pruned tree Prunedlife,t̂α(Tp̂h) : R→ 2X is defined as,

Prunedlife,t̂α(Tp̂h)(λ) =
{
C ∈ Tp̂h(λ− t̂α) : life([C]) > t̂α

}
.

We need to define the function life which corresponds to the two rules presented above. First, define
the level and cumulative level of any edge [C] ∈ E(Tf ) as,

level([C]) = {λ : ∃A ∈ [C] ∩ Tp̂h(λ)} ,
cumlevel([C]) = {λ : ∃A ∈ Tp̂h(λ), B ∈ [C] s.t. A ⊂ B} .

Intuitively, level extends from the bottom to the top of the edge, and cumlevel extends from the
bottom of the edge to the top of the tree branch on which the edge lies. Then the following life
function corresponds to the first pruning rule,

lifeleaf ([C]) =

{
sup{level([C])} − inf{level([C])} if sup{level([C])} = sup{cumlevel([C])}
+∞ o.w.

.

The following life function corresponds to the second pruning rule,

lifetop([C]) = sup{cumlevel([C])} − inf{cumlevel([C])}.

Note that lifetop([C]) ≤ lifeleaf ([C]). The following lemma states that for any life function which is
lower bounded by lifetop, the pruned tree is a valid tree in the confidence set Ĉα and is simpler than
the original tree from which it is constructed.
Lemma 5. Suppose that the function life : E(Tf )→ [0,+∞] satisfies: ∀C ∈ E(Tf ), lifetop([C]) ≤
life([C]), then:

(i) Prunedlife,t̂α(Tp̂h) � Tp̂h .

(ii) There exists a function p̃ s.t. Tp̃ = Prunedlife,t̂α(Tp̂h).

(iii) p̃ in (ii) satisfies p̃ ∈ Ĉα.

Proof. (i) This follows since Prunedlife,t̂α(Tp̂h) is obtained by removing edges from Tp̂h .

(ii) Prunedlife,t̂α(Tp̂h) is generated from the following p̃:

p̃(x) = sup
{
λ : ∃C ∈ Tp̂h(λ) s.t. x ∈ C and life([C]) > 2t̂α

}
+ t̂α (6)

(iii) The outline of the proof is as follows. First note that we can rewrite the KDE estimate as,

p̂(x) = sup{λ : ∃C ∈ Tp̂h s.t. x ∈ C}. (7)

Hence, p̃(x) ≤ p̂(x) + t̂α. Next, define ex = {e : x ∈ e, life(e) ≤ 2t̂α} and observe that:

{λ : ∃C ∈ Tp̂h(λ) s.t. x ∈ C, life([C]) ≤ 2t̂α} ⊂ cumlevel(ex).

But the LHS above is itself a superset of the difference of sets whose supremes are p̃(x) (6) and p̂(x)
(7). Hence,

p̂(x) + t̂α − p̃(x) ≤ sup{cumlevel(ex)} − inf{cumlevel(ex)}
=lifetop(ex)

≤life(ex) ≤ 2t̂α.

Hence, p̂(x)− t̂α ≤ p̃x. Combined with the upper bound on p̃(x) above this implies that p̃(x) lies in
the confidence set.
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Figure 2: Leonardo Da Vinci Figure 3: Noam Chomsky

Figure 4: Density Trees of words from 2 Wikipedia pages with GloVe word embeddings used as data
for constructing the probability distribution. Figure 2 and Figure 3 have been created from documents
of ‘Leonardo da Vincia’ and ‘Noam Chomsky’

5 Simulations – Visualizing Word Embeddings

We perform simulations on the GloVe Word Embedding dataset [13] which was created using text
data found in the real world. This dataset can be summarized as a mapping function φ : A → Rd,
where A is a set of 400 thousand words from the english language and d is the dimension of the
vector space where the words are mapped to. We take d = 50 for our simulations. This dataset is
used to construct a probability distribution ph which is used to construct cluster trees. For the sake of
clarity in visualization we choose a smaller set of words W0 = A ∩Wpage where Wpage is a set of
words extracted from a wikipedia page. We chose ‘Noam Chomsky’ and ‘Leonardo da Vinci’ as their
lives were multi-faceted and we hoped to find words from multiple domains in these documents.

The density trees are shown in Figure 4. It is interesting to note that words with similar meaning (or
context in natural language) end up being a part of the same cluster leaf. This is probably the reason
why words denoting years ended up together while ‘far-left, anarchist, right-wing’ which are political
affiliations were another cluster.

6 Conclusion

In this project we explore Topological data analysis which studies the shape, topological and con-
nectedness properties of the data. Specifically, we study Density based clustering. We start of by
defining tree topology. These definitions were crucial to the unambiguous construction of density
trees, which we later use for the construction of confidence sets for these trees via bootstrap. Finally,
these confidence intervals were used to remove statistically insignificant features of the trees resulting
in a ‘simpler’ tree. It was also shown that the pruned tree is generated from a valid density function
and it lies in the constructed confidence set.
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