
Training Segmentation Models for Extractive and
Generative NLP Tasks with Reinforcement Learning

Akash Bharadwaj
akashb@andrew.cmu.edu

Chaitanya Ahuja
cahuja@andrew.cmu.edu

Abstract

Various NLP tasks arguably involve a segmentation task. Text Summarization involves
finding key pieces of information in a source document that need to be included in the
summary. Extractive Text comprehension involves selectively locating contiguous spans
of answers within a source document in response to a question. Phrase Based Machine
Translation (which often out-performs neural MT in low data scenarios) involves finding
phrases in the source language that are translated as a whole. In this project we investigate
how Stack LSTMs [9] can be used to achieve this segmentation. For many tasks however,
this segmentation is unobserved. We propose to use reinforcement learning to allow Stack
LSTM segmenters to be trained in an unsupervised fashion to optimize performance in an
end task of interest.

1 Introduction

Stack LSTMs [9] are a control structure for sequential, decision making processes that have become popular
in NLP tasks. They involve at least two data structures: a buffer of elements yet to be processed, and a stack
of elements affected by an action that must be chosen by the Stack LSTM. A transition set (set of possible
actions) determines how elements are moved from the buffer to the stack and how stack elements are affected
by an action. The transition set itself can vary from task to task. For a task like extractive text comprehension
or summarization, the transition set would include actions to move an item from the buffer to the stack, retain
all current stack items for the downstream task, or to discard all stack elements. For a task like translation, the
transition set could instead include operations to move a word from the buffer to the stack or translate the current
stack contents and append it to the translation so far (thus building the translation left-to-right).

As noted in the abstract, all of these tasks call for segmentation in some form even though the segmentation
is not explicitly observed. This poses a problem for stack LSTMs since they need explicit supervision for this
by means of an oracle [9]. To deal with the lack of an oracle, we propose to use the REINFORCE algorithm
[20] to replace direct supervision with a reward maximization objective instead, where the reward is primarily
determined by a downstream tasks where the segmentation output is consumed. An additional challenge is that
some tasks such as summarization further enforce a sparsity constraint on the segmentation, i.e., most input is
irrelevant to the summary and should be discarded. We also address this by introducing parsimony penalties and
allowing the user to induce a bias to the segmentation process by incentivizing intuitively favorable segments
(eg. retaining named entities, numbers/dates, noun phrases etc.) This achieves all of the following:

1. Proposes a general method for unsupervised training of stack LSTMs in the absence of an oracle

2. Allows the model designer to debug the model by altering the reward structure of the reinforcement
learning problem to bias segmentation correctly and penalize avoidable errors, based on insights about
the end task.

3. Provides a sparse alternative to attention for tasks that involve verbose input that actually reduces the
input size, thus minimizing the quadratic complexity associated with attention mechanisms.

4. Makes the model’s ’rationale’ evident due to the explicit connection between segmentation and the
end task.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

2 Prior Work

The review of prior work is organized into 2 sections: Review of prior work for summarization and text
comprehension (tasks we plan to use for evaluation), and a review of stack LSTM literature.

Text summarization has been standardized around the DUC competitions [1] since 2001 and a variety of
methods have been proposed. Banko et al. [3] and Wubben et al.[22] borrowed ideas from phrase based
MT for summarization. Zajic et al.[23] merged linguistically motivated source transformation with a topic
detection algorithm to identify key phrases. Cohn and Lapata[6] support more arbitrary transformations via
tree transduction rules extracted from aligned parsed texts. Woodsend et al. instead use context free parses and
dependency parses with a quasi-synchronous grammar approach to produce legible summaries. More recently,
neural seq2seq models have become popular. Rush et al. [18] obtain competitive results using an attentional
seq2seq neural model to summarize single sentence inputs. Cheng and Lapata [5] and Nallapati et al. [13]
proposed neural models for scenarios when the input involves multiple sentences, by incorporating elaborate and
expensive attention mechanisms over all of the input.

Reading comprehension has evolved over the past decade from an extractive[11] to a generative [14] one.
Consider a tuple (d, q, a, C) where d is the document, q is a query, a is the answer and C is the set of all the
candidate answers. For extractive tasks, it is assumed that for ∀c ∈ C at least one of the tokens can be found
in the document d. The task is to find the answer a from the document d which answers the given query q. In
contrast to this, generative reading comprehension does not have C and the answer a answers the question q
based on the document d with a free-form sentence composed of words from the vocabulary of the language
model. Deep models have easily outweighed shallow methods involving handcrafted features, hence we will take
deep models for reading comprehension in literature as baselines. There are broadly two models to tackle the
extractive problem (1) Attention Models [4, 8]: These focus on different parts of the document at different times
(2) Multiple-Hop Methods [19]: They refine the representation of tokens while training. Both these approaches
can be directly extended to a generative model by using a encoder-decoder architecture.

Unlike phrase-based approaches and answers based on handcrafted features, neural models are not easily
interpretable and attention mechanisms can often behave unintuitively. Even though the numerical scores for
neural models are state of the art, the designer does not have a mechanism to control over the how the model
decides to attend to its input. Moreover, such attention mechanisms incur a quadratic time penalty which can be
significant for verbose input. Lastly, the task of reading comprehension is inherently compressive and involves
discarding the bulk of the input and retaining only what is most relevant. Being able to do this competently would
not only reveal the rationale of a summarization model and make it interpretable, but also make it significantly
faster. These are the gaps in prior work that we seek to address.

Stack LSTMs [9] were originally proposed by Dyer et al. for the task of dependency parsing where they obtained
state of the art results. They have since been used for a variety of other tasks such as Named Entity Recognition
[12], constituency parsing [7] [10] and language modeling [10]. As noted before, in each of these tasks it is
trivial to design a deterministic oracle that explicitly supervises the sequence of decisions made by the stack
LSTM. To the best of our knowledge, no attempt has been made to train stack LSTMs without such supervision.

3 Methods

As depicted in figure 1, the overall architecture consists of two parts: a segmenter (stack LSTM) and a generator
(seq2seq). For the purpose of explanation, let use consider the task of summarization with the following simple
document and its corresponding ideal summary:

Document: "The chinese president Xi Jinping arrived in Washington yesterday and met president Obama.
After a long day of constructive dialog between the two premiers, they announced the need for strong ties
between the two nations."

Summary: "The Chinese and American presidents agree to strengthen ties"

The key phrases in the document are highlighted in bold. Ideally, the segmenter should extract them and the
seq2seq generator ensures the final summary is a fluent composition of the relevant phrases extracted by the
segmenter. Note that the generated summary is not a simple concatenation of phrases from the input.

The model works in a step-wise fashion. The stack LSTM is initialized with an empty stack (S), empty action
history (A) and a buffer (B) full of words in the document. The transition set of the stack LSTM restricts the

2

Figure 1: Model Schematic

number of possible actions at each step. This is an advantage of stack LSTMs since we have direct control over
the action space through the transition set. For the task of summarization, the transition set has exactly 3 actions:

1. SHIFT: Moves the top of B to the top of S

2. REDUCE_1: Appends all stack elements to the input tape and pops them off the stack S

3. REDUCE_2: Discards all stack elements

At each time step the stack LSTM chooses to perform one of these 3 actions. Since each word can
be pushed onto the stack only once and can be reduced only once, the document is parsed in linear
time. As the document is parsed by the stack LSTM segmenter, the input tape is populated with a sequence
of key phrases. The next step is for the seq2seq generator to consume the input tape and decode a fluent summary.

At train time, we have the additional task of learning parameters. The seq2seq generator can be trained in a
supervised fashion using a typical categorical cross entropy loss. The segmenter cannot be trained in this fashion
due to the lack of relevant annotations in the data. Thus, we use the REINFORCE algorithm[20]. The intuition
is that better segmentations lead to better summaries. In the extremal case, a segmenter that discards all input
will lead to the same summary for any input which is clearly sub-optimal. Thus, the metric for the downstream
task (eg. BLEU, ROUGE, METEOR) can be used as reward for the REINFORCE algorithm.

As noted in [17], training parameters from scratch using REINFORCE can result in catastrophic divergence
while training, especially if rewards are sparse and have high variance. In [17], this is addressed by seeding the
parametric model with MLE parameters obtained by training on a small, suitably annotated training set. We
propose a different strategy. We train the segmenter to initially mimic a naive policy of retaining all inputs.
This means a regular seq2seq model (such as the one used in [18]) is the fall back option and any change in
the segmenter’s behavior should lead to an improvement. Furthermore, the seq2seq generator is pre-trained to
consume all input and generate a summary. By using this kind of a curriculum during training, we can hopefully
avoid divergence during optimization.

Another aspect worth talking about in more detail is the rewards themselves. The obvious reward is the score
(higher being better) obtained in the downstream task of interest. Unlike most applications of reinforcement
learning where it is possible to take thousands of actions before any reward is seen, for a sentence with N words,
we take at most 2N actions until a reward is obtained. This coupled with a small transition set for the stack
LSTM should aid in learning the optimal policy.

In addition to the score obtained in the downstream task, we can provide more fine grained intermediate rewards
to induce specific biases in the segmenter based on error analysis or human insight, without actual supervision.
For example, we can incentivize the retention of named entities, noun phrases etc. Similarly, we can penalize
negative segmentation behaviours such as verbosity/retention of the whole input (after the policy initialization
phase), retention of stop words etc.

3

3.1 Sequence to Sequence Model

To demonstrate the effectiveness of the approach described in the paper, we use a state-of-the-art sequence to
sequence model for generation. Based on the quality of the generated outputs, we quantify rewards which are
used to estimate the policy that decides the actions of the segmenter. In this section, we describe the formulation
of sequence to sequence model used for our experiments.

Consider a model consisting of an encoder, denoted by e(.), and a decoder, denoted by d(.). These encoders and
decoders are composed of LSTM cells. Also, with the sequence of inputs x1, x2, . . . xT which represent the
document in the summarization task, we can write the transformations as

[z1, z2, . . . , zT],m = e(x1, x2, . . . xT), (1)
where z1, z2, . . . zT are the hidden state outputs of the encoder, T is the number of time steps in the encoder and
m is the memory states at the final time-step. These memory states will be used as the starting memory of the
LSTM cell of the decoder. Hence,

[ŷ1, ŷ2, . . . , ŷR] = d([y1, y2, . . . , yR],m) (2)
where y1, y2, . . . yR are the ground-truths (gold-label summaries) and ŷ1, ŷ2, . . . , ŷR are the predicted values
by the decoder.

Clearly, the encoding m is the only vector that contains information of the documents, and with increasing
number of time steps, a lot of information gets lost in LSTM cells because of gated transformations. Hence, it
is a good idea to make use of the hidden state outputs (z1, z2, . . . zT) of the encoder. This approach is called
attention [2] modeling.

The approach described by Bahdanau et al. [2] uses a generic function approximator g(.) which quantifies the
importance of all z1, z2, . . . zT in form of weights,

αij = g(zi, yj) (3)

where
∑T

i=1 αij = 1. αij’s are used as the weights for zi’s. The resulting embedding is concatenated with yj
and used inputs to the decoder.

aj =

T∑
i=1

αijzi (4)

where the new input for the decoder is [yj , aj].

It is interesting to note that any good approximator can be used to estimate the importance of the sequence of
input words. In our case, for a fixed j and i = 1, 2 . . . T ,

α′
ij = g(zi, yj) =< zi, yj >, (5)

where <.,.> denotes dot product.

α1j , α2j , . . . , αTj = softmax
(
[α′

1j , α
′
2j , . . . , α

′
Tj]
)

(6)

We use dot-product as the function approximator as it forces the network to learn correlation between encoder
and decoder embeddings.

3.2 Stack LSTM

In this section, we specify the mathematical details of the stack LSTM model. It is trained using two different
techniques:

3.2.1 Imitation Learning

Imitation learning is used to pre-train the stack LSTM. In this setting, an oracle (expert) that executes the naive
policy perfectly is used. We first define some entities

1. Segmenter state at before the tth action:
pt = relu{W [st; bt; at] + d} (7)

where W is a learned parameter matrix, d is the corresponding vector of biases and st, bt, at are the
tops of the stack, buffer and action history respectively.

4

2. Probability of the tth action zt:

p(zt|pt) =
exp

(
gTztpt + qzT

)∑
z
′∈A(S,B) exp

(
gT
z
′ pt + qz′

) (8)

where gz is an embedding corresponding to an action z from the valid transition set given the current
contents of stack S and buffer B (A(S,B)). qz is the corresponding bias term.

Since we use LSTMs to encode the contents of the buffer, stack and history of actions (refer to Dyer et. al [9] for
details) in the segmenter state pt, we are not making any independence/markovian assumptions when we define
the probability of an action sequence Z (given all the input W) as:

p(Z|W) =

|Z|∏
t=1

p(Zt|pt) (9)

During imitation learning, the oracle/expert prescribes the sequence of actions Z. Training the stack LSTM to
mimic the expert involves maximizing the likelihood of this sequence, which is p(Z|W). To do so, we simply
apply a categorical cross entropy loss at each action prediction step. This yields the following loss which we
minimize:

Loss to minimimize = −
|Z|∑
t=1

(log(p(zt|pt))) (10)

3.2.2 REINFORCE

The imitation learning procedure is merely a pre-training step. The next step is to use REINFORCE to learn a
better policy than the naive policy. For this, we modify the approach proposed in prior work by Ranzato et. al
[17]. Since the stack LSTM has been trained to mimic a naive policy (which is deterministic), we instead use an
epsilon greedy policy that falls back to the stack LSTM’s policy with probability 1− ε and selects an action
uniformly with probability ε. This encourages exploration of policies very different from the naive one.

Let rt denote the discounted future reward for the tth action zt based on a segmentation obtained using the
ε-greedy policy followed by summary generation via the sequence to sequence model using the generated
segmentation. This future reward can include the log likelihood of the gold summary as well as more fine grained
rewards such as the number of target summary words retained by a reduce operation, parsimony penalties for
retaining too many words etc.

Let G be the gold summary (sequence of words) and Z be a segmentation generated by following the ε-greedy
policy. P(Z|W) as defined in equation 9. P(G|Z) is given by the sequence to sequence model.

p(G,Z|W) =p(Z|W) ∗ p(G|Z) (11)

p(G,Z|W) =

 |z|∏
t=1

p(zt|pt)

 ∗ p(wg
1 , ..., w

g
T) (12)

if the segmentations were observed in the dataset, we could directly optimize this for the gold segmentation Z to
obtain MLE parameters for the stack LSTM, and optimize for the gold summary G to obtain MLE parameters
for the sequence to sequence model, jointly. However, we do not observe segmentations. We only know G. Thus,
assuming any arbitrary performance metric r(Z,W,G) (higher being better), we define the following loss:

L =−
∑
∀Z

p(G,Z|W) ∗ r(Z,W,G) (13)

(14)

This is essentially the negated expected reward. The sum over all possible segmentations Z is intractable, so
we use a point estimate. Following Ranzato et. al [17], the gradient of the loss L with respect to stack LSTM
parameters θ is:

5

∂L

∂θ
=

|Z|∑
t=1

(
∂L

∂ot
∗ ∂ot
∂θ

)
(15)

where ot is the input to the softmax at each action prediction step of the stack LSTM.

∂L

∂ot
=r(Z,W,G) ∗ (p(zt|W)− 1(zt)) (16)

where the second term in the product is the gradient of softmax. In practice, we apply the variance reduction
technique where the reward term is mean centered around the average reward obtained for the tth action (rt):

∂L

∂ot
=(r(Z,W,G)− rt) ∗ (p(zt|W)− 1(zt)) (17)

We use SGD to minimize the loss using these gradients. Intuitively, this is incentivizing the stack lstm to prefer
actions that lead to positive net rewards. The use of the baseline is important, since we don’t want to incentivize
all actions that leads to positive rewards, but only those that result in an improvement over the average.

We estimate rt using a parametric regression model using the segmenter state and simultaneously train it using a
simple MSE loss. Special care is taken to ensure the MSE loss doesn’t back-propagate into the stack LSTM
parameters.

4 Dataset

GigaWord for summarization [18] - This is a collection of News articles modified to suit the summarization task.
The first line of each article is used as a descriptive sentence and the corresponding headline is treated as the
summary of that sentence. This claim is reasonable as the first sentence of an article generally describes the
headline in more detail. There are over 3.8 million train examples, while we use around 190 thousand examples
for validation.

5 Experimental Design

5.1 Experiments

Prior to the full fledged experiments on summarization/text comprehension, we have run experiments to
individually verify the two components of our model, namely the stack-lstm and the seq2seq model. We
evaluate them separately on two different tasks which they are individually suitable for. The stack LSTM is
evaluated on a dependency parsing task. Training and evaluation is done on a subset of the Penn Treebank
annotated with dependency arcs and labels. The seq2seq model is evaluated on a summarization dataset
extracted from the English Gigaword corpus, as described in [18]. The summarization dataset can be found at
http://opennmt.net/Models.

5.1.1 Results

For the stack LSTM evaluation on dependency parsing, we benchmark against MaltParser [15], which is the
most famous off the shelf dependency parser and has achieved state of the art results on multiple languages. For
the benchmark below, it is run out of the box using POS tags and various other engineered features. The stack
LSTM is trained using a procedure similar to that described in [9] with a few exceptions. We use the GLOVE
pretrained word embeddings [16] and we use single layer LSTMs for encoding the stack, buffer and action
history. No hand engineered features other than POS tags are used.

Model LAS UAS
Malt Parser 82.73% 79.86%
Stack LSTM 83.08% 79.92%

Table 1:

The results show that our stack LSTM implementation is correct and is better than a competitive off the shelf
parser on English.

6

We implemented sequence to sequence model with one layer of LSTM for both encoder and decoder. Instead
of using pre-trained embeddings, like in the case of StackLSTM, we learn the embeddings from scratch. The
model was trained, with supervision, on the task of text summarization and a procedure similar to that described
in [18] to ensure a fair comparison. The processed version of GigaWord dataset was used, which already had
‘<unk>‘ tokens and the digits were replaced by ‘#‘. Hence the vocabulary was not truncated any further.

Model ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L
Seq2Seq 26.89 8.08 2.55 24.78
Seq2Seq w/ Segmenter 25.31 7.18 2.60 23.41

Table 2:

The results shown in table 2 are the scores on the validation set. As we can see that the high ROUGE-1 and
ROUGE-L scores imply that the generated summaries have a lot of uni-grams in common, while ROUGE-2 and
ROUGE-3 scores are on the lower side. The performance will improve with the inclusion of attention which we
will incorporate in the final model.

On comparing the seq2seq model with one that uses the segmenter, we see that the segmenter leads to an
improvement in ROUGE-3 while all other ROUGE scores are slightly lower. We attribute this to the fact that the
REINFORCE implementation is currently slow and only about 1000 samples have been used for training. Thus,
the segmenter has not explored enough samples to arrive at a good, generally applicable policy via REINFORCE.
On running REINFORCE for longer and for more samples, we expect to see learning curves where there is an
initial decrease in performance (due to exploration), followed by an eventual improvement (exploiting a good
discovered policy). Another possible reason is that the initial exploration is too random. Currently, we use ε =
0.5 annealed down to 0.05 over the first million samples. It might be better to start at ε = 0.05 (or even 0 for no
forced exploration) and let the segmenter deviate from its naive policy as necessary.

We have added randomly picked (not cherry-picked) examples in Table 3 which show that the generated models
make grammatical sense for most cases. In some cases like Row 9, the resulting summary is different from the
ground truth but makes complete grammatical and semantic sense.

5.2 Qualitative Analysis

It was interesting to see the generated summaries on the validation dataset. We have listed some of those in Table
3. Example 1 shows a simple summary for the document at hand and is very similar to the reference summary.
This document was is unambiguous and does not require a lot of contextual information, hence was probably
easy to generate. While, example 2 is much more complicated. The summary had the country ‘Mongolia’ which
is not mentioned in the document itself. On closer inspection, it is seen that ‘ulan bator’ which is mentioned in
the document is the capital of Mongolia. This is really interesting as the model figured out the country based
on a city in the original text. In example 4, the generated summary is ‘british coach claims era of conspiracy’
which is in-line with the document. In fact the word ‘conspiracy’ does not even turn up in the document, but
the model is able to understand the context and predict a word describing the whole scenario. Similarly, in
example 5, there is no reference of ‘genetic’ in the document, but based on the words like ‘chemical’ and other
related word, ‘genetic’ was predicted. Even, though it is does not correspond very well to the original document,
the summarization aspect of the model performs reasonably well. In example 9, the summary is inherently
wrong as the subject of the sentence was switched from (‘Britain’) to the other country (‘Sudan’) mentioned
in the text. Finally, example 8 is very interesting as the summary is ‘thailand to beef up foreign beef ban’ as
the sentence makes complete sense, even after the well known problem of cyclic repetition in the sequence to
sequence models. Although, it is unclear, if the generation is such because it makes semantic sense, or cycle due
to a recurrent neural network.

6 Conclusions

In this project, we implemented stack LSTMs and sequence to sequence models for summarization. We evaluated
them individually on dependency parsing and summarization respectively. We proposed a way by which the
training of stack LSTMs for segmentation tasks can be done without explicit supervision (using imitation
learning followed by REINFORCE) and performed experiments to demonstrate that performance is comparable
to baselines (and beats the baseline on ROUGE-3). We are currently running summarization experiments to
monitor long term convergence behavior and will eventually run more insightful qualitative analysis to interpret
the segmenter outputs one it has converged to a good policy.

As future work, we would like to apply the proposed approach to machine translation, where phrase segmentation
is likely to be useful, as demonstrated by phrase based machine translation systems which are still state-of-the-art
for many languages.

7

Table 3: Generated Summaries by Vanilla seq2seq model

Article Headline(Ground Truth)
Model Generated Summarie

1. kuwait stock exchange index closed at #,###.#
points tuesday , #.# points up from monday ’s finish
.

kuwait stock exchange index
up

kuwait stock exchange closes
higher

2. visiting chinese president hu jintao left here on
wednesday for ulan bator to continue his first over-
seas trip as chinese head of state after winding up
his two - day state visit to kazakhstan . .

chinese president leaves
kazakhstan for mongolia

chinese president hu leaves
for mongolia

3. hollywood is planning a new sequel to adventure
flick “ ocean ’s eleven , ” with star george clooney
set to reprise his role as a charismatic thief in “
ocean ’s thirteen , ” the entertainment press said
wednesday .

hollywood shores up support
for ocean ’s thirteen

us hills to run for oceanic
ocean marathon

4. britain ’s top swimming coach bill sweetenham ,
who was cleared by an independent investigation
of bullying members of the british team , still has
questions to answer his employers when he returns
at the end of the month .

cleared,facing another
grilling from british swim
bosses

british coach claims era of
conspiracy

5. basf , the world ’s biggest chemicals company ,
prefers that its planned takeover of us firm engel-
hard was a friendly rather than a hostile move , basf
chairman juergen hambrecht said in a newspaper
interview published on thursday .

basf prefers friendly takeover
of us firm engelhard

basf has leading genetic aid
research maker

6. several thousand people gathered on wednesday
evening on the main square in zagreb for a public
draw and an open air party to celebrate the croat-
ian capital ’s second chance to host the women ’s
slalom world cup .

thousands of croatians cel-
ebrate before world cup
slalom

zagreb fans celebrate interna-
tional storm

7. the philippine government said thursday it wants a
“ swift resolution ” of journalists ’ murders , after
a global press watchdog said the country was the
world ’s deadliest place for journalists next to iraq
in #### .

philippines vows swift reso-
lution of press murders

philippine govt looks to truth
journalists

8. thailand will discuss lifting its ban on us beef ,
imposed two years ago over mad cow fears , when
negotiators from the two nations meet next week
for free trade talks , health officials said thursday .

thailand may lift ban on us
beef

thailand to beef up foreign
beef ban

9. britain ’s un envoy on wednesday urged stronger
international support „including greater eu funding
, for the african union -lrb- au -rrb-,peacekeeping
mission in sudan ’s troubled darfur region to im-
prove,security on the ground .

britain urges stronger interna-
tional support for au in darfur

sudan urges un peacekeeping
operations in darfur

10. us president george w. bush defied congress again
wednesday as he placed a slew of controversial
political allies in key defense and foreign policy
posts in his administration by circumventing the
requisite approval process in the senate .

bush defies congress names
defense foreign policy posts

bush takes on triumph as re-
publicans face dismissal

References
[1] Document understanding conference. EMNLP, 2016. URL http://duc.nist.gov/.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[3] Michele Banko, Vibhu O Mittal, and Michael J Witbrock. Headline generation based on statistical
translation. In Proceedings of the 38th Annual Meeting on Association for Computational Linguistics,
pages 318–325. Association for Computational Linguistics, 2000.

8

http://duc.nist.gov/

[4] Danqi Chen, Jason Bolton, and Christopher D Manning. A thorough examination of the cnn/daily mail
reading comprehension task. arXiv preprint arXiv:1606.02858, 2016.

[5] Jianpeng Cheng and Mirella Lapata. Neural summarization by extracting sentences and words. arXiv
preprint arXiv:1603.07252, 2016.

[6] Trevor Cohn and Mirella Lapata. Sentence compression beyond word deletion. In Proceedings of the
22nd International Conference on Computational Linguistics-Volume 1, pages 137–144. Association for
Computational Linguistics, 2008.

[7] James Cross and Liang Huang. Span-based constituency parsing with a structure-label system and provably
optimal dynamic oracles. EMNLP, 2016.

[8] Bhuwan Dhingra, Hanxiao Liu, William W Cohen, and Ruslan Salakhutdinov. Gated-attention readers for
text comprehension. arXiv preprint arXiv:1606.01549, 2016.

[9] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith. Transition-based
dependency parsing with stack long short-term memory. ACL, 2015.

[10] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776, 2016.

[11] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. Teaching machines to read and comprehend. In Advances in Neural Information
Processing Systems, pages 1693–1701, 2015.

[12] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. Neural
architectures for named entity recognition. NAACL, 2016.

[13] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization using
sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

[14] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng.
Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268,
2016.

[15] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. Maltparser: A language-independent system for data-driven dependency parsing. Natural
Language Engineering, 13(02):95–135, 2007.

[16] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[17] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training with
recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

[18] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence
summarization. arXiv preprint arXiv:1509.00685, 2015.

[19] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint arXiv:1410.3916,
2014.

[20] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

[21] Kristian Woodsend, Yansong Feng, and Mirella Lapata. Generation with quasi-synchronous grammar. In
Proceedings of the 2010 conference on empirical methods in natural language processing, pages 513–523.
Association for Computational Linguistics, 2010.

[22] Sander Wubben, Antal Van Den Bosch, and Emiel Krahmer. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 1015–1024. Association for Computational Linguistics, 2012.

[23] David Zajic, Bonnie Dorr, and Richard Schwartz. Bbn/umd at duc-2004: Topiary. In Proceedings of the
HLT-NAACL 2004 Document Understanding Workshop, Boston, pages 112–119, 2004.

9

	Introduction
	Prior Work
	Methods
	Sequence to Sequence Model
	Stack LSTM
	Imitation Learning
	REINFORCE

	Dataset
	Experimental Design
	Experiments
	Results

	Qualitative Analysis

	Conclusions

