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Topological Data Analysis

e Topological Data Analysis (TDA) refers to data analysis methods
which study properties such as shape, topology and connectedness of
the data.

@ This includes:

Clustering (particularly Density Based Clustering)

o Density Modes and Ridge Estimation

e Manifold Learning / Dimension Reduction

o Persistent Homology

@ TDA is useful as a visualization tool and for summarizing
high-dimensional datasets.
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This Project

@ We review recent work [1] on performing statistical inference for
Density Trees—a particular class of hierarchical clustering methods.
@ Outline:

o Definitions and Tree Topology
e Constructing confidence sets via bootstrap
e Pruning trees to remove insignificant features

@ As an application, we generate density trees to visualize distribution
of words in documents
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Density Trees

Suppose the data lies in X C RY. Given a density function
f: X —[0,00),
@ Let T¢(X\) denote the connected components of the upper level set
{x : f(x) > A}. These are the high density clusters at level \.
@ The density tree is the collection of all such clusters:
{Te} = Tr = UrTe(N).
e This is a tree by construction, i.e. if A,B € {T¢}, then either A C B,

or BCAor ANB=¢.
I\
)\

Figure: Obtained from [2]
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Estimated Tree

In general we have an iid sample from the true density X1, Xo,..., Xy ~ p.

The Estimated Tree T, is the tree constructed from the Kernel Density
Estimate:

N

R 1 [Ix = Xi

Pn(x) = nhd Z K(T)
i=1

Ta(N) = {x : u(x) > A}
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Tree Topology

tree distance function between elements of the tree:

>
< -

o Given a tree {T¢}, we can define the A

de(C]_,Cz) :)\1+)\2—2mf(C1,C2) C1,C2 S {Tf}

@ It can be shown that d7, is a metric on { T}, and hence induces a
metric topology on it.

If the true unknown density p is a morse function, then 3 a constant
ho > 0, such that Vh s.t. 0 < h < hg, the true cluster tree, T, and the
estimated tree Tp, have the same metric topology above.

Hence we do not need to let the KDE bandwidth h — 0. This leads to a
dimension-independent rate of convergence for the bootstrap confidence

set.
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Confidence Sets via Bootstrap

@ To construct confidence sets, we first need a metric to measure the
“closeness” of two trees. The /5, metric is defined as,

doo (Tp, Tq) = ilég Ip(x) — a(x)| = [Ip — gl

@ The confidence set is defined as C, = {T : duo(T, T5,) < to} for Tp,.
@ t, can be obtained by the bootstrap:

£, = Fl1-a)

Where {f’}h, e, f'g are the estimated trees for the bootstrap
samples {X{,..., X!}, ... {XB,..., XB}.
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Convergence Rate

Under regularity conditions on the kernel, the constructed confidence
interval is asymptotically valid and satisfies,

P(Tp€€a>—1—a+0(|0g7n>6 (1)

where Co = {T : doo(T, Tp,) < ta}

v

From the Lemma presented previously, we can fix h to a small constant, to

1
BN
obtain a dimension-independent rate of O <'°ng> °
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Notions of Tree Simplicity

o The confidence set C,, contains infinitely many trees—including very
complex ones obtained by small perturbations of the density estimate.

@ We would like to obtain “simple” trees by removing statistically
insignificant features.

@ A notion of simplicity is given by the following partial ordering:

Definition

For any f,g : X — [0,00) and their trees T¢, T, wesay Tr < T, if 3 a
map ® : {T¢} — { Tz} which preserves set inclusion relationships, i.e. for
any G, G € {T¢} we have GG C G iff &(C;) C o(G).

@ This partial ordering matches intuitive notions of simplicity, for e.g. if
Tr is obtained by removing edges from T, then T¢ < T,.
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Pruning Rules

Following two strategies are suggested to prune the empirical tree Tp,:
@ Pruning leaves: Remove all leaves of the tree with length less than
2%,.
@ Pruning leaves and internal branches: Remove all leaves and
internal branches of the tree with cumulative length less than 2%,.

It can be shown that the tree obtained after pruning from either of these
two strategies,

Is simpler than Tg,.

Is generated from a valid density function.

And the density function lies in the constructed confidence set.
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Visualization of Word Embeddings
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Figure: Cluster tree for Wikipedia Page on Noam Chomsky
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Visualization of Word Embeddings
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Figure: Cluster tree for Wikipedia Page on Leonardo da Vinci
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