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Topological Data Analysis

Topological Data Analysis (TDA) refers to data analysis methods
which study properties such as shape, topology and connectedness of
the data.

This includes:

Clustering (particularly Density Based Clustering)
Density Modes and Ridge Estimation
Manifold Learning / Dimension Reduction
Persistent Homology

TDA is useful as a visualization tool and for summarizing
high-dimensional datasets.
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This Project

We review recent work [1] on performing statistical inference for
Density Trees—a particular class of hierarchical clustering methods.

Outline:

Definitions and Tree Topology
Constructing confidence sets via bootstrap
Pruning trees to remove insignificant features

As an application, we generate density trees to visualize distribution
of words in documents
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Density Trees

Suppose the data lies in X ⊂ Rd . Given a density function
f : X → [0,∞),

Let Tf (λ) denote the connected components of the upper level set
{x : f (x) > λ}. These are the high density clusters at level λ.
The density tree is the collection of all such clusters:
{Tf } = Tf = ∪λTf (λ).
This is a tree by construction, i.e. if A,B ∈ {Tf }, then either A ⊂ B,
or B ⊂ A or A ∩ B = φ.

Figure: Obtained from [2]
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Estimated Tree

In general we have an iid sample from the true density X1,X2, . . . ,XN ∼ p.
The Estimated Tree Tp̂h is the tree constructed from the Kernel Density
Estimate:

p̂h(x) =
1

nhd

N∑
i=1

K (
‖x − Xi‖

h
)

Tp̂h(λ) = {x : p̂h(x) > λ}
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Tree Topology

Given a tree {Tf }, we can define the
tree distance function between elements of the tree:

dTf
(C1,C2) = λ1 + λ2 − 2mf (C1,C2) C1,C2 ∈ {Tf }

It can be shown that dTf
is a metric on {Tf }, and hence induces a

metric topology on it.

Lemma

If the true unknown density p is a morse function, then ∃ a constant
h0 > 0, such that ∀h s.t. 0 < h ≤ h0, the true cluster tree, Tp and the
estimated tree Tp̂h have the same metric topology above.

Hence we do not need to let the KDE bandwidth h→ 0. This leads to a
dimension-independent rate of convergence for the bootstrap confidence
set.
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Confidence Sets via Bootstrap

To construct confidence sets, we first need a metric to measure the
“closeness” of two trees. The l∞ metric is defined as,

d∞ (Tp,Tq) = sup
x∈χ
|p(x)− q(x)| = ‖p − q‖∞

The confidence set is defined as Cα = {T : d∞(T ,Tp̂h) ≤ tα} for Tph .

tα can be obtained by the bootstrap:

F̂ (s) =
1

B

B∑
i=1

I(d∞(T̃ i
ph
,Tp̂h) < s)

t̂α = F̂−1(1− α)

Where {T̃ 1
ph
, . . . , T̃B

ph
} are the estimated trees for the bootstrap

samples {X̃ 1
1 , . . . , X̃

1
n }, . . . , {X̃B

1 , . . . , X̃
B
n }.

C. Ahuja, B. Dhingra (LTI, CMU) Statistical TDA 8 / 14



Convergence Rate

Theorem

Under regularity conditions on the kernel, the constructed confidence
interval is asymptotically valid and satisfies,

P
(
Tp ∈ Ĉα

)
= 1− α + O

(
log7 n

nhd

) 1
6

(1)

where Ĉα = {T : d∞(T ,Tp̂h) ≤ t̂α}

From the Lemma presented previously, we can fix h to a small constant, to

obtain a dimension-independent rate of O
(
log7 n
n

) 1
6
.
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Notions of Tree Simplicity

The confidence set Ĉα, contains infinitely many trees—including very
complex ones obtained by small perturbations of the density estimate.

We would like to obtain “simple” trees by removing statistically
insignificant features.

A notion of simplicity is given by the following partial ordering:

Definition

For any f , g : X → [0,∞) and their trees Tf , Tg we say Tf � Tg if ∃ a
map Φ : {Tf } → {Tg} which preserves set inclusion relationships, i.e. for
any C1,C2 ∈ {Tf } we have C1 ⊂ C2 iff Φ(C1) ⊂ Φ(C2).

This partial ordering matches intuitive notions of simplicity, for e.g. if
Tf is obtained by removing edges from Tg , then Tf � Tg .
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Pruning Rules

Following two strategies are suggested to prune the empirical tree Tp̂h :

1 Pruning leaves: Remove all leaves of the tree with length less than
2t̂α.

2 Pruning leaves and internal branches: Remove all leaves and
internal branches of the tree with cumulative length less than 2t̂α.

It can be shown that the tree obtained after pruning from either of these
two strategies,

Is simpler than Tp̂h .

Is generated from a valid density function.

And the density function lies in the constructed confidence set.
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Visualization of Word Embeddings

Figure: Cluster tree for Wikipedia Page on Noam Chomsky
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Visualization of Word Embeddings

Figure: Cluster tree for Wikipedia Page on Leonardo da Vinci
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