Statistical Topological Data Analysis

Chaitanya Ahuja¹ Bhuwan Dhingra¹

¹Language Technologies Institure Carnegie Mellon University

Contents

- 1 Introduction Topological Data Analysis
- 2 Density Trees
- Statistical Inference over Trees
- Visualization of Word Embeddings

Topological Data Analysis

- Topological Data Analysis (TDA) refers to data analysis methods which study properties such as shape, topology and connectedness of the data.
- This includes:
 - Clustering (particularly Density Based Clustering)
 - Density Modes and Ridge Estimation
 - Manifold Learning / Dimension Reduction
 - Persistent Homology
- TDA is useful as a visualization tool and for summarizing high-dimensional datasets.

This Project

- We review recent work [1] on performing statistical inference for Density Trees—a particular class of hierarchical clustering methods.
- Outline:
 - Definitions and Tree Topology
 - Constructing confidence sets via bootstrap
 - Pruning trees to remove insignificant features
- As an application, we generate density trees to visualize distribution of words in documents

Density Trees

Suppose the data lies in $\mathcal{X} \subset \mathbb{R}^d$. Given a density function $f: \mathcal{X} \to [0, \infty)$,

- Let $T_f(\lambda)$ denote the connected components of the upper level set $\{x: f(x) > \lambda\}$. These are the high density clusters at level λ .
- The density tree is the collection of all such clusters: $\{T_f\} = T_f = \bigcup_{\lambda} T_f(\lambda)$.
- This is a tree by construction, i.e. if $A, B \in \{T_f\}$, then either $A \subset B$, or $B \subset A$ or $A \cap B = \phi$.

Figure: Obtained from [2]

Estimated Tree

In general we have an iid sample from the true density $X_1, X_2, \ldots, X_N \sim p$. The **Estimated Tree** $T_{\hat{p}_h}$ is the tree constructed from the Kernel Density Estimate:

$$\hat{p}_h(x) = \frac{1}{nh^d} \sum_{i=1}^N \mathcal{K}(\frac{\|x - X_i\|}{h})$$

$$T_{\hat{p}_h}(\lambda) = \{x : \hat{p}_h(x) > \lambda\}$$

Tree Topology

 Given a tree {T_f}, we can define the tree distance function between elements of the tree:

$$d_{T_f}(C_1, C_2) = \lambda_1 + \lambda_2 - 2m_f(C_1, C_2)$$
 $C_1, C_2 \in \{T_f\}$

• It can be shown that d_{T_f} is a metric on $\{T_f\}$, and hence induces a metric topology on it.

Lemma

If the true unknown density p is a morse function, then \exists a constant $h_0 > 0$, such that $\forall h$ s.t. $0 < h \le h_0$, the true cluster tree, T_p and the estimated tree $T_{\hat{p}_h}$ have the same metric topology above.

Hence we do not need to let the KDE bandwidth $h \to 0$. This leads to a dimension-independent rate of convergence for the bootstrap confidence set.

Confidence Sets via Bootstrap

• To construct confidence sets, we first need a metric to measure the "closeness" of two trees. The I_{∞} metric is defined as,

$$d_{\infty}\left(T_{p}, T_{q}\right) = \sup_{x \in \chi} |p(x) - q(x)| = \|p - q\|_{\infty}$$

- The confidence set is defined as $C_{\alpha} = \{T : d_{\infty}(T, T_{\widehat{p_h}}) \leq t_{\alpha}\}$ for T_{p_h} .
- t_{α} can be obtained by the bootstrap:

$$\hat{F}(s) = \frac{1}{B} \sum_{i=1}^{B} \mathbb{I}(d_{\infty}(\tilde{T}_{p_h}^i, T_{\widehat{p}_h}) < s)$$
 $\hat{t}_{\alpha} = \hat{F}^{-1}(1 - \alpha)$

Where $\{\tilde{T}_{p_h}^1,\ldots,\tilde{T}_{p_h}^B\}$ are the estimated trees for the bootstrap samples $\{\tilde{X}_1^1,\ldots,\tilde{X}_n^B\},\ldots,\{\tilde{X}_1^B,\ldots,\tilde{X}_n^B\}$.

Convergence Rate

Theorem

Under regularity conditions on the kernel, the constructed confidence interval is asymptotically valid and satisfies,

$$\mathbb{P}\left(T_{p} \in \hat{C}_{\alpha}\right) = 1 - \alpha + O\left(\frac{\log^{7} n}{nh^{d}}\right)^{\frac{1}{6}} \tag{1}$$

where
$$\hat{C}_{\alpha} = \{T : d_{\infty}(T, T_{\hat{p}_h}) \leq \hat{t}_{\alpha}\}$$

From the Lemma presented previously, we can fix h to a small constant, to obtain a dimension-independent rate of $O\left(\frac{\log^7 n}{n}\right)^{\frac{1}{6}}$.

Notions of Tree Simplicity

- The confidence set \hat{C}_{α} , contains infinitely many trees—including very complex ones obtained by small perturbations of the density estimate.
- We would like to obtain "simple" trees by removing statistically insignificant features.
- A notion of simplicity is given by the following partial ordering:

Definition

For any $f,g:\mathcal{X}\to [0,\infty)$ and their trees T_f , T_g we say $T_f\preceq T_g$ if \exists a map $\Phi:\{T_f\}\to \{T_g\}$ which preserves set inclusion relationships, i.e. for any $C_1,C_2\in \{T_f\}$ we have $C_1\subset C_2$ iff $\Phi(C_1)\subset \Phi(C_2)$.

• This partial ordering matches intuitive notions of simplicity, for e.g. if T_f is obtained by removing edges from T_g , then $T_f \leq T_g$.

Pruning Rules

Following two strategies are suggested to prune the empirical tree $T_{\hat{p}_h}$:

- **1 Pruning leaves:** Remove all leaves of the tree with length less than $2\hat{t}_{\alpha}$.
- **Q** Pruning leaves and internal branches: Remove all leaves and internal branches of the tree with *cumulative length* less than $2\hat{t}_{\alpha}$.

It can be shown that the tree obtained after pruning from either of these two strategies,

- Is simpler than $T_{\hat{p}_h}$.
- Is generated from a valid density function.
- And the density function lies in the constructed confidence set.

Visualization of Word Embeddings

Figure: Cluster tree for Wikipedia Page on Noam Chomsky

Visualization of Word Embeddings

Figure: Cluster tree for Wikipedia Page on Leonardo da Vinci

References I

Jisu Kim et al. "Statistical Inference for Cluster Trees". In: arXiv preprint arXiv:1605.06416 (2016).

Larry Wasserman. "Topological Data Analysis". In: arXiv preprint arXiv:1609.08227 (2016).