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A plethora of data is sequential in nature
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We might lose information if the order is not preserved
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Rise of Neural Networks

Function Approximator: A model that can approximate such
distributions.

⇒ Neural Networks

Adaptable: Generalizable over large datasets by increasing number of
parameters.

⇒ Increase depth of Neural Networks.

Order Preserving: Use order-information as well to predict.

⇒ Deep Recurrent Neural Networks (Deep RNNs)

Trainable: Estimate accurate functions in a practical time-frame.

Use gradient based approaches.
Are they easy to train?

Why? Motivation May 30, 2017 4 / 28
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Rise of Recurrent Neural Networks

xt = RNN (xt−1, ct−1)

Language Modeling

Note: Blue Arrows correspond to hidden states (ct−1).
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Rise of Recurrent Neural Networks

Trainability: Vanilla RNNs suffer from the Vanishing Gradient
problem,
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Figure 1: Forward Pass

yt+1 = Xxt +Cct

ct+1 = σ (yt+1)

pt+1 = softmax (Wct+1)
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Rise of Recurrent Neural Networks

GRUs/LSTMs alleviate this problem by using gates on inputs, outputs
and hidden states [Hochreiter and Schmidhuber, 1997].

yτ = Xxτ +Cσ (yτ−1) (1)

Let C = I and σ(x) = x. Then,

∂yτ
∂yτ−1

= CTσ′(yτ−1)

≈ I

(Constant Error Carrousel)

To retain modeling power, introduce a non-linear term

yτ = Xxτ + yτ−1 + z · φ (yτ−1)
∂yτ
∂yτ−1

≈ I+ z · φ′ (yτ−1)
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Rise of Recurrent Neural Networks

GRU Equations
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GRU
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y

x

Time

Depth

z = σ(Xz x +Yz y )

r = σ(Xr x +Yr y )

ỹ = tanh
(
X x +Y(r · y )

)
yt+1 = y′ = (1− z) · y + z · ỹ
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Rise of Deep Recurrent Neural Networks

Even though the gating mechanisms (i.e. CEC) resolve vanishing
gradient issues along time,

Gradients have been shown to vanish along depth.

Time

Depth

Figure 3: Gradients along Depth in a GRU
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Rise of Deep Recurrent Neural Networks

We observe the gradients while training a Deep GRU network on
Character-Level Language Model.
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Figure 4: Gradient-Norms across depth in a 10-layered GRU
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Rise of Deep Recurrent Neural Networks
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Related Work

Grid-LSTMs [Kalchbrenner et al., 2015] is to have different hidden
states along time and depth.

Related Work May 30, 2017 13 / 28
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Research Question

Is it possible to design a Recurrent Unit

that passes
different hidden states along depth and time

while
enforcing Constant Error Carrousel ?

YES!!!

What? Research Question May 30, 2017 15 / 28
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Formulation of Lattice Recurrent Unit

z = σ(Xz x +Yz y )

r = σ(Xr x +Yr y )

q = σ(Xq x +Yq y )

x̃ = tanh
(
Xx x +Yx

(
r · y

))
ỹ = tanh

(
Yy y +Xy

(
q · x

))
xt+1 = x′ = z · ỹ + (1− z) · x

yt+1 = y′ = z · x̃+ (1− z) · y
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yt+1 = y′ = z · x̃+ (1− z) · y

How? Formulation May 30, 2017 16 / 28



Formulation of Lattice Recurrent Unit

LRU

LRU

LRU

LRU

y

x

x′

y′

z = σ(Xz x +Yz y )

r = σ(Xr x +Yr y )

q = σ(Xq x +Yq y )

x̃ = tanh
(
Xx x +Yx

(
r · y

))
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Task: Character Level Language Modeling

Out of Vocabulary Words can potentially be modeled.

Character Aware Neural Language Models [Kim et al., 2016]

Speech Synthesis [Wang et al., 2017]
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Datasets

We take 2 datasets Penn Tree Bank and War and Peace.

Each of them has around 5 million characters.

War and Peace (WP)

Well, Prince, so Genoa and Lucca are
now just family estates of the
Bonapartes. But I warn you, if you don’t
tell me that this means war, if you still
try to defend the infamies and horrors
perpetrated by that Antichrist–I really
believe he is Antichrist–I will have
nothing more to do with you and you are
no longer my friend, no longer my
’faithful slave,’ as you call yourself!

Penn Tree Bank (PTB)

the asbestos fiber <unk> is unusually
<unk> once it enters the <unk> with
even brief exposures to it causing
symptoms that show up decades later
researchers said, <unk> inc. the unit of
new york-based <unk> corp. that makes
kent cigarettes stopped using <unk> in
its <unk> cigarette filters in N.
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Experimental Setup

Multi-Class Classification Problem

Categorical Cross-Entropy Loss

loss =
∑

∀i∈C pi log(p̂i)
where C is the set of all classes.

RNN unrolled 50 time-steps in time.
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Experimental Questions

Accuracy: For equal number of parameters does the loss improve?

Convergence Rate: How many epochs does it take for the model to
converge?

Trainability: How are the gradient norms distributed across layers?
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Results - Accuracy

Table 1: Penn Treebank Dataset and losses are in bits per character (BPC).
Lower is better. l is the number of layers.

Tess Loss (BPC) Hidden

Model l = 2 l = 4 l = 6 l = 8 Units

GRU 1.107 1.092 1.125 2.99 387

LSTM 1.110 1.13 1.254 1.311 335
GLSTM 1.119 1.106 1.111 1.105 237
Highway 1.110 1.102 1.107 - -
LRU 1.097 1.102 1.101 1.103 300
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Results - Accuracy

Table 2: War and Peace Dataset and losses are in bits per character (BPC).
Lower is better. l is the number of layers.

Tess Loss (BPC) Hidden

Model l = 2 l = 4 l = 6 l = 8 Units

GRU 1.285 1.293 1.344 3.104 387

LSTM 1.297 1.353 1.530 3.100 335
GLSTM 1.319 1.317 1.312 1.31 237
Highway 1.294 1.298 1.306 1.305 -
LRU 1.279 1.280 1.281 1.287 300
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Results - Convergence Rates
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Figure 5: Convergence rates of various models on PTB and WP datasets.
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Results - Trainability
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(a) GRU

Figure 6: Gradient Norms across layers and number of epochs as a heatmap.
Darker values are bigger.
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Conclusions

Faster convergence rates for LRU

Gradients are spread out across the layers. Hence alleviation of
vanishing gradients.

While not aggravating the performance.
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Thank You
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