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Introduction

• Head Related Impulse Response (HRIR) captures the effects of

interaction of sound with human anatomy.

• Head diffraction causes ITD and ILD between sound waves arriv-

ing at both ears which are the primary binaural cues in horizontal

plane localization.

• The effect of head is invariant in the median plane as both the

binaural cues (ITD and ILD) are nearly equal to zero.

• Pinna geometry causes multiple reflections of sound wave, and the

delay between direct wave and the wave reflected by pinna wall

results in periodic spectral notches.

• Head Related Transfer Function (HRTF) corresponding to mea-

sured HRIR are simulated by FBS over the median plane, and

spectral notches are extracted from reconstructed HRTF.

• These spectral notches smoothly vary with elevation angles, and

are highly dependent on pinna dimensions.

Plane wave Decomposition

• HRTF recorded by spherical array of microphones due to source

located at the entrance of ear canal can be decomposed into spher-

ical harmonics as
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0 ≤ θ ≤ π, 0 ≤ φ < 2π

• Under the far field assumption (r > 1m), HRTF will be indepen-

dent of range r and can be represented as
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where Hm
n (f ) is Spherical Fourier Transform (SFT).

• Alternatively, the far field HRTF can be decomposed into its cor-

responding Legendre polynomial and complex exponential as
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HRTF Modeling over Median Plane

• In terms of convergence and computational complexity, complex

exponents are better choice as compared to associated Legendre

polynomial to represent HRTF over the median plane.

• Using head-centered interaural polar coordinate system, 3 dimen-

sional HRTF in Equation 4 can be represented over the median

plane (θ = π
2 ) as
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• The spectral component Cm(f ) can be modeled by the family of

Bessel functions of first kind as
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• Combining Equations 5 and 6, median plane HRTF can be decom-

posed into Fourier Bessel Series as
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where Cmk represent Fourier Bessel Coefficient, and are calcu-

lated as
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Choice of Truncation number
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• The modal parameter Cmk are band limited and preserve negligible energy after

some truncated value |m| > M and k > K +K ′.

• Cmk corresponding to first K ′ roots of Bessel function preserve faint initial pulse

which do not contribute any structural feature of HRIR.

• Cmk corresponding to next K roots preserve much of variations due to pinna

alone, and are very significant for pinna spectral notches.

• In CIPIC database, It is found that convergence is achieved for M = 10,K ′ =
30 and K = 40.

Pinna Reflection Model

• According to two ray reflection model, the resultant signal y(t) due to interfer-

ence between direct wave, x(t) and the wave reflected by pinna wall, x(t−t(φ))
is given by

y(t) = x(t) + ρ(φ)x(t− t(φ)) (9)

or Y (ejω) = (1 + ρ(φ)e−jωt(φ))X(ejω) (10)

• The elevation dependent temporal delay t(φ) results the point of reflection in

the pinna image at a distance given by

d(φ) =
ct(φ)

2
(11)

• It also results in the periodic spectral notches whose frequencies (assuming

ρ(φ) > 0) are given by

fn(φ) =
2n + 1

2t(φ)
=

c(2n + 1)

4d(φ)
,∀n = 0, 1, 2, · · · (12)

• The first spectral notch frequency occurs at f0(φ) =
c

4d(φ)

• Assuming Satarzadeh’s hypothesis of negative reflection coefficient (ρ(φ) < 0),

the spectral notch frequency gets doubled as

f0(φ) =
c

2d(φ)
(13)

Reconstructed HRIR

• The Fourier Bessel Coefficients in Equation 7 are calculated from discrete spa-

tial and spectral HRTF measured over the hemispherical median plane as
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|m| ≤ M,K ′ < k < K ′ +K

• Measured HRIR is composed of head diffraction, pinna and torso reflections,

and as an artifact, knee reflection.

• In the lower elevation angles, this knee reflection appears within 1 ms time

window along with pinna reflections.

• HRIR reconstructed through Fourier Bessel Series only preserves the pinna re-

flections that appear within 0.5 ms window range.

Extraction of Pinna Spectral Notches
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• HRIR reconstructed through Fourier Bessel Series only highlights the effects of

pinna resonances and notches.

• LP residual of reconstructed HRIR removes the pinna resonances while retains

the pinna spectral nulls.

• Windowing the LP Residual of reconstructed HRIR makes the spectrum smoothen

while preserving the pinna spectral notches.

• Auto-correlation of windowed LP residual preserves most of the details of spec-

tral envelop such as notch depth and bandwidth.

• Due to high frequency resolution property of group delay function, pinna spec-

tral notches are extracted from the group delay of the windowed auto-correlation

function.

• Threshold of -1 is empirically chosen in order to avoid spurious nulls caused by

windowing.

Experiments on Pinna Spectral Notches

• Publicly available CIPIC database is used where the data-set of several sub-

jects with their pinna images and corresponding anthropometry parameters are

available.

• HRIRs are measured using head-centered interaural polar coordinate system

with elevation uniformly sampled from −45◦ to 230.625◦ in the median plane.

• Based on prior researches, Pinna spectral notch frequencies are assumed to ap-

pear in frequency range from 5 kHz to 16 kHz, and are extracted from robust

signal processing techniques.

• Pinna image of particular subject is uniformly scaled in order to match with

pinna parameters such as d5 (pinna height) and d6 (pinna width).

• The distance d(φ) between pinna reflection point and the entrance of the ear

canal is calculated from Equation 13 for frontal median plane φ ∈ [−45◦ 90◦].

• Each notch point is mapped to (d(φ), π + φ) in the right pinna and (d(φ),−φ)
in the left pinna with respect to entrance of the ear canal.

Pinna Spectral Notches overlaid on
HRTF
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Conclusion

• A fast method to extract accurate pinna spectral notches that follow the actual

pinna wall structure is proposed.

• The main novelty of the proposed work is the efficient reconstruction of HRIR

over the median plane of a virtual spherical array simulated using the Fourier

Bessel series, especially at lower elevation angles.

• HRIRs corresponding to lower elevation angles suffer from knee reflections

which have slight contribution as compared to other anatomical reflections in

the measured HRIR.

• The proposed method can suppress the knee reflections due to capability of

preserving strong variations of pinna alone under finite truncation.

• The pinna spectral notches extracted are also very accurate and smooth when

compared to conventional spherical array based approach.

• The proposed method is robust to extract the pinna spectral notches even if

HRIR is measured over the complete hemisphere.
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